
ABSTRACT
Numerous notations, methodologies, and tools exist to support
software system modeling. While individual models help to
clarify certain system aspects, the large number and heteroge-
neity of models may ultimately hamper the ability of stake-
holders to communicate about a system. A major reason for
this is the discontinuity of information across different mod-
els. In this paper, we present an approach for dealing with that
discontinuity. We introduce a set of “connectors” to bridge
models, both within and across the “upstream” activities in the
software development lifecycle (specifically, requirements,
architecture, and design). While the details of these connectors
are dependent upon the source and destination models, they
share a number of underlying characteristics. These character-
istics can be used as a starting point in providing a general
understanding of software model connectors. We illustrate our
approach by applying it to a large-scale system we are cur-
rently designing and implementing in collaboration with a
third-party organization.

Keywords
Software model, software requirements, software architecture,
software design, refinement, traceability, model connector

1 INTRODUCTION
Software engineering researchers and practitioners have
developed a plethora of models that focus on different aspects
of a software system. These models fall into five general cate-
gories: domain, success, process, product, and property mod-
els [7]. Numerous notations, methodologies, and tools exist to
support models in each category. For example, within the last
decade, the heightened interest in software architectures has
resulted in several product and property models based on
architecture description languages (ADLs), architectural
styles, and their supporting toolsets [31,37,41].

Models are an indispensable tool in software development.
They help developers curb system complexity; they also help
the many stakeholders in a project convey their concerns to
other stakeholders in a manner that is understandable and that
will ensure the proper treatment of those concerns. However,
the preponderance of models actually renders the ultimate goal
of development—implementing dependable software—more
difficult in many ways. The reason for this is the discontinuity
of information across different models. For example, a sys-
tem’s requirements might be described using use-case scenar-
ios and entity-relationship diagrams, while its design may be
captured in class, object, collaboration, and activity diagrams.
The problem, then, is twofold:
1. ensuring the consistency of information across models

describing the same artifact (e.g., a class instance in object
and collaboration diagrams in a design), and

2. ensuring the consistency of information across models
describing different artifacts (e.g., use-cases in a system’s
requirements and classes in its design).

In both cases, each model provides (different) information in
different ways, making it very difficult to establish any proper-
ties of the modeled phenomena as a whole.

The focus of our previous work was on identifying and
classifying different categories of models [7] and providing
support for specific models within each category (e.g., require-
ments models [6], architecture models [30], and design mod-
els [15]). This paper discusses a set of techniques we have
developed to bridge the information gap created by such het-
erogeneous models.

In many ways, we view the problem of bridging heteroge-
neous models as similar to the one that has recently generated
much interest in the software architecture community: a soft-
ware architecture can be conceptualized as a diagram consist-
ing of “boxes,” representing components, and “lines,”
representing component relationships (i.e., connectors); while
we may have a more complete understanding of the compo-
nents, many of the critical properties of a software system are
hidden within its connectors [28,40]. Similarly, the individual
models produced during a software system’s lifecycle com-
prise the “lifecycle architecture” boxes; the properties of these
individual models are typically well understood. Much more
challenging is the problem of understanding and providing the
necessary support for the lines between the boxes, i.e., the
model “connectors.”

The work described in this paper focuses on model connec-
tors traditionally associated with the “upstream” activities in
the software lifecycle: requirements, architecture, and design.
In particular, we have devised a set of techniques for bridging
1. requirements and architecture models,
2. architecture and design models, and
3. different design models, both at the same level and across

levels of abstraction.
As this paper will demonstrate, each of the three cases

introduces its own issues and challenges. Moreover, for practi-
cal reasons, our investigation to date has focused on a limited
number of models. Nevertheless, we have been able to suc-
cessfully develop and combine a set of model connectors that
allow us to start with a high-level requirements negotiation
and arrive at a low-level application design in a principled
manner. In the process, we have developed a novel, light-
weight technique for transferring requirements into architec-
tural decisions. We have also introduced a model transforma-
tion framework that supports multiple views of a system’s
design.

Software Model Connectors: Bridging Models across the Software Lifecycle
 Nenad Medvidovic Paul Gruenbacher Alexander Egyed Barry W. Boehm

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 USA
{neno,gruenbac,aegyed,boehm}@sunset.usc.edu

The results outlined above are specific to our approaches to
requirements, architecture, and design modeling. However, we
have leveraged this experience, along with existing literature
on software model transformations, to devise a set of shared
principles we believe to be model-independent. In particular,
we classify the properties of model connectors and relation-
ships among individual elements of different models. We illus-
trate these properties and relationships both via examples
drawn from our work and from well-understood software
transformation techniques (e.g. compilation).

The remainder of the paper is organized as follows. Section
2 introduces the example application we will use for illustra-
tion throughout the paper. Sections 3, 4, and 5 briefly intro-
duce the requirements, architecture, and design modeling
approaches we developed in the past and used as the basis of
this work, and then provide in-depth discussions of the model
connectors we have developed for bridging them. Due to the
scope of our work and number of model connectors we have
developed, at times we are forced to omit some of the tech-
niques’ details and convey their general flavor to the reader
instead. Section 6 outlines the general properties of software
model connectors we have identified. A discussion of related
work and conclusions round out the paper. It is important to
note that our approach does not assume any particular lifecy-
cle model (e.g., waterfall or spiral) or software development
process. The sequential ordering of lifecycle activities implied
by the paper’s organization (Sections 3, 4, and 5 in particular)
was adopted for presentation purposes only.

2 EXAMPLE APPLICATION
We use an example application to illustrate the concepts intro-
duced in this paper. The application is motivated by the sce-
nario we developed in collaboration with a major U.S.
software development organization. The scenario postulates a
natural disaster that results in extensive material destruction
and casualties. In response to the situation, an international
humanitarian relief effort is initiated, causing several chal-
lenges from a software engineering perspective. These chal-
lenges include efficient routing and delivery of large amounts
of material aid; wide distribution of participating personnel,
equipment, and infrastructure; rapid response to changing cir-
cumstances in the field; using existing software for tasks for
which it was not intended; and enabling the interoperation of
numerous, heterogeneous systems employed by the participat-
ing countries.

We have performed a thorough requirements, architecture,
and design modeling exercise to address these concerns. We
have also provided a partial implementation for the resulting
system (referred to as “cargo router”). This implementation is
an extension of the logistics applications discussed in [30].

3 SOFTWARE REQUIREMENTS MODEL CONNECTORS

3.1 Modeling Software Requirements
During requirements engineering, the needs, expectations,
constraints, and goals of a project’s stakeholders have to be
gathered, communicated, and negotiated to achieve a mutually
satisfactory solution. We have developed the WinWin
approach for collaborative requirements negotiation and suc-
cessfully applied it in over 100 real-client projects [6,7]. Win-
Win defines a model guiding the negotiation process:

stakeholder objectives and goals are expressed as win condi-
tions; known constraints, problems, and conflicts among win
conditions are captured as issues; options describe possible
alternative solutions to overcome the issues; if a consensus is
achieved among stakeholders, agreements are created. We
have recently enhanced the WinWin approach and have used a
COTS groupware environment as its implementation substrate
[20]. The result, “EasyWinWin,” supports brainstorming, cate-
gorization, and prioritization of win conditions, identification
and resolution of conflicts, as well as collaborative character-
ization of application domain properties [8].

A team of stakeholders used EasyWinWin to gather, negoti-
ate, and elaborate requirements for the cargo router system. In
the first round of requirements negotiation the team came up
with 64 win conditions, which provided a starting point for
further negotiation and architectural refinements. The left pane
of Figure 1 shows a snapshot of the EasyWinWin negotiation
tool: WinWin artifacts are organized in a tree and marked with
artifact type and stakeholder tags (left pane); a voting tool is
used to aid the transformation of software requirements into an
architecture, as discussed below (right pane).

3.2 Requirements-to-Architecture Model Connector
The relationship between a set of requirements, such as those
produced by an EasyWinWin negotiation, and an effective
architecture for the desired system is not readily obvious.
Requirements largely describe the problem to be solved (and
constraints on its solution), whereas architectures model a
solution to the problem. The terminology and concepts used to
describe the two also differ. For example, WinWin deals with
win conditions, issues, options, and agreements, while archi-
tectures deal with components, their interactions (i.e., software
connectors or buses), system topologies, and properties [41].
For these reasons, we have investigated principled ways of
relating requirements and architecture models and defining a
viable architecture that addresses a given set of requirements.
Unfortunately, the large semantic gap between high-level,
sometimes ambiguous requirements artifacts and the more
specific architectural artifacts (e.g., modeled in a formal ADL)
often does not allow one to establish meaningful links
between them. This section proposes a model connector that
remedies the problem and facilitates the bridging of the two
models.

We have developed the CBSP (Component, Bus, System,
Property) model connector that bridges requirements and
architectures. CBSP artifacts refine WinWin’s artifacts into
architectural decisions. CBSP is a tool-aided, but highly

Figure 1. EasyWinWin negotiation tree and CBSP vote views.

human-intensive technique. Software architects assess the win
conditions for their relevance to a system’s architecture: its
components (i.e., processing and data elements [37]), buses
(i.e., connectors [41]), overall configuration (i.e., the system
itself or a particular subsystem), and their properties (e.g., reli-
ability, performance, and cost).1 If it is deemed architecturally
relevant, a win condition is refined into one or more artifacts
in the CBSP model connector. Each CBSP artifact thus expli-
cates an architectural concern and represents an early architec-
tural decision for the system. For example, a win condition
such as

W: The system should provide an interface to a Web browser.
can be recast into a processing component CBSP artifact

Cp: A Web browser should be used as a component in the sys-
tem.

and a bus CBSP artifact
B: A connector should be provided to ensure interoperability
with a third-party Web browser.
The CBSP dimensions include a set of general architectural

concerns that can be applied to systematically classify and
refine requirements negotiation artifacts and to capture archi-
tectural tradeoff issues and options. There are six possible
CBSP dimensions. They are discussed below and illustrated
with examples drawn from the cargo router system negotia-
tion.

(1) C – artifacts that describe or involve a Component in an
architecture. For example

W12: Allow customizable reports, generated on the fly.
is refined into CBSP artifacts describing both processing (Cp)
and data (Cd) components

Cp: Report generator component.
Cd: Data for report generation.

(2) B – artifacts that describe or imply a Bus. For example
W30: The system should have interfaces to related applica-
tions (vehicle management system, staff availability).

can be refined into
B: Connector to staff and vehicle management systems.

(3) S – artifacts that describe System-wide features or fea-
tures pertinent to a large subset of the system’s components
and connectors. For example

W6: Capability to react to urgent cargo needs.
is refined into

S: The system should deploy automatic agents to monitor and
react to urgent cargo needs.

(4) CP – artifacts that describe or imply Component Prop-
erties. For example

W44: Client UI should be accessible via a palm-top or lap-
top device.

is refined into
CP: The client UI component should be portable and effi-
cient to run on palm-top as well as lap-top devices.

(5) BP – artifacts that describe or imply Bus Properties. For
example

W42: Integration of third party components should be
enabled without shutting down the system.

is refined into
BP: Dynamic, robust connectors should be provided to
enable “on the fly” component addition and removal.

(6) SP – artifacts that describe or imply System (or sub-
system) Properties. For example

W6: Operators must be promptly notified of subsystem fail-
ures.

is refined into
SP: The system should support real-time communication and
awareness.
During this process of refining requirements, a given CBSP

artifact may appear multiple times as a by-product of different
requirements. For example, in the cargo router system require-
ments negotiation, two win conditions

W1: Optimize concurrent routing to increase speed of high-
priority cargo delivery.

and
W3: Support for different types of cargo.

result in the identification of a cargo data component (see Fig-
ure 2). Such redundancies are identified and eliminated by the
CBSP model connector, resulting in a minimal (intermediate)
CBSP model. During minimization, it is also possible to
merge multiple related CBSP artifacts and converge on a sin-
gle artifact. The minimal CBSP model thus allows architects
to maintain arbitrarily complex dependencies between a sys-
tem’s requirements and its architecture.

1. Note that a given architectural approach (e.g., GenVoca [4]) need
not explicitly treat software connectors (i.e., buses). This does not
prevent one from applying CBSP however: system architects can
simply ignore the B category.

Figure 2. Transforming a requirements model into an architectural model using the CBSP model connector (shown in the two middle diagrams).
Grey arrows indicate traceability links between model elements. As discussed further in Section 4.1, an architectural model cannot be directly
derived from a (minimal) CBSP model. However, a CBSP model maps to an architecture in a more obvious way than does a requirements model.

W1

Optimize
concurrent routing
to increase speed

of high-priority
cargo delivery

W2

Support real-time
communication
from system to

vehicle

I1
Problem: In order to
optimize concurrent
routings, we need to

support bi-directional real-
time communication

Support bi-directional real-time
communication between

system and vehicle

<<replaces>>

W4

Optimizer Vehicle

Warehouse

One-Way
Bus

Two-Way
Bus

<<depends>>

Negotation Rationale View CBSP View

support for different
types of cargoW3

real-time bi-
direct.

Cargo

Cargo Cargo
types

CargoRouter

Optimizer

VehicleWarehouse

ServicesConn

ArtistConn

Artist

Clock

ClockConn

C2 Architectural View

Reporter

CommunicationConn

Port

Two-Way
Bus

Cargo

Vehicle

Warehouse

<<depends>>

Minimal CBSP View

<<depends>>

<<extends>>

Cargo
types

real-time bi-
direct.<<extends>>

Optimizer

We have developed tool support for identifying and classi-
fying the architectural relevance of win conditions as part of
the EasyWinWin environment (recall Figure 1). The CBSP
dimensions are applied in a voting process involving multiple
experts (e.g., software architects, domain experts, developers).
The experts use the six criteria described above to classify the
architectural relevance of each win condition as unknown, not
relevant, and partially, largely, or fully relevant. The voting
results assist architects in focusing on the relevant subset of
the system requirements. The right pane of Figure 1 shows a
screenshot of the voting tool. Shaded cells in the figure indi-
cate large discrepancies in votes among the experts and reflect
potentially confusing win conditions. These win conditions
must be discussed, and often reframed, in order to avoid costly
errors and misunderstandings.

3.3 Application to the Cargo Router Example
CBSP bridges the requirements and architecture models by
providing comprehensible views accessible to both the
requirements engineer and the software architect. Figure 2
shows an example of the use of CBSP; it depicts the relation-
ships between partial models taken from the cargo router case
study. The Negotiation Rationale View shows a set of WinWin
artifacts. The Architectural View is a possible architecture for
the cargo router example further discussed in Section 4. The
CBSP model connector comprises two views: the CBSP View,
created by classifying and refining win conditions, and the
Minimal CBSP View, created by eliminating replaced and
merging related CBSP artifacts.

In the example shown in Figure 2, win condition W1 was
voted as being fully component relevant, largely bus relevant,
and largely bus property relevant. Win conditions W2 and W4
were voted as being fully bus property relevant (omitted from
the diagram for simplicity) and largely bus relevant. Finally,
W3 was voted as being largely component relevant. Upon fur-
ther analysis, it is revealed that W1 describes multiple archi-
tectural elements. The two middle diagrams in Figure 2 show
the result of this process: W1 is eventually divided into several
components, a connector, and a connector property in the min-
imal CBSP view.

4 SOFTWARE ARCHITECTURE MODEL CONNECTORS

4.1 Modeling Software Architectures
A minimal CBSP view suggests the key architectural elements
and their properties for an application. However, it does not
provide guidance for achieving an effective topology of those
architectural elements: the S and SP categories of architectural
decisions provide only hints about the characteristics of the
topology. Similarly, in the course of architectural decomposi-
tion, the architect may discover that additional components
and connectors are needed that have not been identified
through requirements elicitation and refinement. For these rea-
sons, the architectural details suggested by CBSP must be
complemented with architectural design principles.

There exists a large body of work on arriving at an effective
architecture for a given problem. Architectural styles [41] pro-
vide rules that exploit recurring structural and interaction pat-
terns across a class of applications and/or domains. Domain-
specific software architectures (DSSA) and product-line archi-
tectures [36] provide generic, reusable architectural solutions
(reference architectures) for a class of applications in a single
domain and instantiate those solutions to arrive at a specific
application architecture. Finally, a large body of ADLs and
their supporting toolsets [31] allow developers to model, ana-
lyze, and implement software systems.

In our work to date, we have chosen to use architectural
styles as guides in transforming the initial architectural deci-
sions produced by the CBSP model connector into an actual
architecture. We have explored the feasibility of composing
CBSP artifacts into an architecture according to the Pipe-and-
Filter [41], GenVoca [4], Weaves [19], and C2 [30] styles. An
analysis of the key requirements for the cargo router system
(e.g., scale, distribution, evolvability, heterogeneity) suggested
Weaves and C2 as suitable styles. Since our software architec-
ture research is centered around C2 and we had previously
applied C2 in the design and implementation of a logistics
application, it became our primary choice, as already fore-
shadowed in Figure 2.

C2 provides a number of useful rules for high-level system
composition. A C2-style architecture consists of processing
components, buses, and their configurations; data components

CargoRouter

Optimizer

VehicleWarehouse

ServicesConn

ArtistConn

Artist

Clock

ClockConn

Reporter

CommunicationConn

Port

Figure 3. (a) Architectural breakdown of the cargo routing system. (b) Partial cargo routing system architecture specified in C2SADEL.
(c) Partial Port component type specified in C2SADEL. “~” denotes the value of a variable after an operation has been performed, while “#”
denotes set cardinality. C2SADEL uses a backslash to distinguish a keyword from an identifier with the same name (e.g., “\set” versus “set”).

architecture CargoRouteSystem is {
component_types {

component Port is extern {Port.c2;}
component Artist is virtual {}
... }

connector_types {
connector RegConn is {filter no_filter;} }

architectural_topology {
component_instances {

aPort : Port;
Display : Artist; ... }

connector_instances {
ClockConn, ArtistConn : RegConn; ... }

connections {
connector Clock Conn {

top SimClock;
bottom aPort; }

connector ArtistConn {
top Optim, Report, ServicesConn;
bottom Display; }

... } }
}

component Port is
subtype CargoRouteEntity (int \and beh) {

state {
cargo : \set Shipment; selected : Integer; ... }

invariant { (cap >= 0) \and (cap <= max_cap); }
interface {

prov ip_selshp: Select(sel : Integer);
req ir_clktck: ClockTick(); ... }

operations {
prov op_selshp: {

let num : Integer;
pre num <= #cargo;
post ~selected = num; }

req or_clktck: {
let time : STATE_VARIABLE;
post ~time = time + 1; }

... }
map {

ip_selshp -> op_selshp (sel -> num);
ir_clktck -> or_clktck ();
... }

}

(a) (b) (c)

are treated implicitly, as attributes of the processing compo-
nents’ interactions. For example, in Figure 2 Cargo is not
explicitly represented in the C2 architecture. C2 imposes a
particular topological order on the components and buses in an
architecture: components may interact only via buses and may
have at most one bus on their top and one on their bottom
sides; as a side-effect, topologically adjacent components may
not directly interact. Furthermore, each components is sub-
strate-independent and may only have knowledge of the com-
ponents above it in the architecture.

Based on the dependencies among the elements in the mini-
mal CBSP view, the rules of the C2 style allow us to compose
them into an architecture. For example, as shown in Figure 2,
Optimizer depends on Vehicle and Warehouse; C2’s substrate
independence principle mandates that Optimizer be placed
below them in the architecture. Since there are no direct
dependencies between Vehicle and Warehouse, they may be
adjacent. Note that the same dependency relationship would
have different topological implications in a different style. For
example, GenVoca would require Optimizer to be above the
Vehicle and Warehouse components (while still allowing Vehi-
cle and Warehouse to be at the same level). Furthermore,
unlike C2, GenVoca would allow direct interactions among its
components, without the intervening connectors.

The C2 architecture of a subset of the cargo routing appli-
cation is shown in Figure 3a. The Port, Vehicle, and Ware-
house components maintain the state of the application.
Optimizer ensures the most efficient distribution of vehicles at
the delivery ports, assignment of cargo to the vehicles, and
routing of vehicles to the warehouses. CargoRouter tracks the
cargo during its delivery to a warehouse, while Reporter
allows progress tracking of the system by a human operator.
SystemClock provides consistent time measurement to inter-
ested components. Finally, the Artist component renders the
application’s user interface.

C2-style architectures are modeled in an ADL, C2SADEL
[30]. C2SADEL allows modeling of component and connector
types, which are then instantiated and composed into a config-
uration. For illustration, an excerpt of a C2SADEL model of
the cargo router architecture is shown in Figure 3b, while a par-
tial specification of the Port component type is given in Figure
3c. Such a specification is analyzed for consistency by C2’s
DRADEL environment [30].

4.2 Architecture-to-Design Model Connector
Based on the information provided in a C2SADEL model of
an architecture, DRADEL is capable of generating a partial
implementation of that architecture [30]. However, many
lower-level issues needed to complete the implementation
(e.g., specific data structures and algorithms) are not provided
at the architectural level. For that reason, the “outer skeleton”
of the application generated from the architectural model must
be complemented with the details typically provided through
lower-level design activities.

To ensure the traceability of design-level details to the
architecture and vice versa, we have developed a model con-
nector that synthesizes a design model from an ADL model.
We selected the Unified Modeling Language (UML) [9] as the
target design language and conducted an in-depth study of the
feasibility of mapping several ADLs to UML [38].2 Based on

this earlier study, we have implemented a model connector
between C2SADEL to UML. The transformation results in an
intermediate model that is represented in UML, but reflects
the structure, details, and properties of the original architec-
tural model.3 The model connector is defined by a set of rules
that ensure that every C2SADEL feature is transferred into
UML. A preliminary attempt at such a rule set was discussed
in [1]. We have since refined and completed these rules. Addi-
tionally, we have integrated DRADEL with the Rational Rose
UML modeling environment [29], allowing fully automated
synthesis of UML models from C2SADEL architectures.

A small excerpt of the rule set comprising the model con-
nector between C2SADEL and UML models is shown in Fig-
ure 4. It indicates that, for example, a C2 component is
modeled in UML as a collection of “stereotyped” UML ele-
ments (classes, operations, and attributes). Stereotypes are an
extension mechanism provided by UML to enable modeling
of constructs (e.g., «C2-Component») not originally envi-
sioned by UML’s designers. As demonstrated in [38], the
semantics of such constructs are specified formally using

2. A more detailed overview of UML is given in Section 5.
3. We should note that the ADL and UML models are not entirely

isomorphic. Space limitations prevent us from further elaborating
on this issue here. Additional details can be found in [38].

Figure 4. Partial rule set for transforming a C2SADEL model into a
UML model. This rule set is implemented by the integration of
DRADEL and Rational Rose.

Component Internal Object gg Class
State Variable gg Class Private Attribute
Provided Operation gg Class Operation

Component gg <<C2-Component>> Class
Internal Object gg <<C2-Component>> Class Attribute
Component Interface gg <<Interface>> Class

Connector gg <<C2-Connector>> Class
Architecture Configuration g g Object Diagram + Component Diagram

Component/Connector Binding gg Object Link (instance of an association)

CargoRouter

Optimizer

VehicleWarehouse

ServicesConn

ArtistConn

Artist

Clock

ClockConn

Reporter

CommunicationConn

Port

Partial C2
Architectural View

Artis tConn :

R e g C o n n

Art ist : Art ist

C o m p o n e n t

CargoRouter : Cargo

RouterCom ponen t

Vehicle : Vehicle

C o m p o n e n t

Reporter : Reporter

C o m p o n e n t

Serv icesConn :

Mul t icastConn

Warehouse :

W a r e h o u s e C o m p o n e n t

Port : Port

C o m p o n e n t

Clock : Clock

C o m p o n e n t

Optim izer : Optim izer

C o m p o n e n t

Commun ica t i on

Conn : RegConn

ClockConn :

C lockConn

Figure 5. Synthesis of an intermediate UML model from the C2
architectural model model shown in Figure 3.

UML Model of a C2 Component

UML Model
of a C2 Architecture

ITopVehicleComponent

< < Interface>>

IBottomVehicleComponent

<<out>> getVehiclesCompleted()

<<out>> unloadShipmentCompleted()

<<out>> addShipmentCompleted()

<<in>> getVehicles()

<<in>> unloadShipment()

<<in>> addShipment()

< < Interface>>

VehicleInternalObject

vehicles : VehicleType_SET

getVehicles()

unloadShipment()

addShipment()

(f rom Logical View)

Vehic l eComponent

state_var : VehiclesComponent

<<C2-Component>>

UML’s Object Constraint Language (OCL), which is based
on first-order predicate logic [9].

4.3 Application to the Cargo Router Example
The C2 architecture of the cargo router application is mapped
into several UML diagrams as indicated by the rules in Figure
4. Each C2 component and connector is mapped to a specific
set of UML class diagrams, representing its internal details as
modeled in C2SADEL, while the overall configuration is
mapped to UML component and object diagrams. Figure 5
shows the synthesized (partial) UML view of the cargo router
architecture. All the details of the architecture represented in
C2SADEL are transferred into this intermediate model.

5 SOFTWARE DESIGN MODEL CONNECTORS

5.1 Modeling Software Designs
Our support for software design leverages a large body of
mainstream design notations and methodologies, collected
into the UML [9]. UML is a graphical language that provides a
useful and extensible set of predefined constructs, it is semi-for-
mally defined, and it has substantial (and growing) tool support.
UML allows designers to produce several models of a soft-
ware system via the supported diagrams: class, object, collab-
oration, package, component, use case, statechart, activity,
sequence, and deployment diagrams. As discussed above,
UML allows additional semantic constraints to be placed on
its modeling elements via OCL.

Once the intermediate UML model is synthesized from the
architecture in the manner discussed in Section 4, that model
must be further refined to address the missing lower-level
design issues, such as additional processing and data elements,
specific data structures, and algorithms. This section discusses
model connectors we have developed to bridge related design
models (e.g., class diagrams) at different levels of abstraction,
as well as different design models (e.g., class and statechart
diagrams) at the same level of abstraction.

5.2 Inter-Design Model Connectors
In order to help bridge design models, we have devised a set of
design model connectors, accompanied by a set of activities
and techniques for identifying inconsistencies among the mod-
els in an automatable fashion. We refer to the model connec-
tors, activities, and techniques as a view integration
framework [14]. The view integration framework identifies
and supports two categories of design model transformations:
design refinement and design view transformations. Design
refinement involves bridging between higher-level and lower-
level views, while design view transformations provide

bridges among different system views at the same level of
abstraction.

As discussed above, UML supports a wide range of dia-
grams to model a system. Our view integration framework
currently encompasses eight transformations between models
expressed in four different UML diagrams: class, object,
sequence, and statechart diagrams. Due to space constraints,
we will discuss the general principles of the view integration
framework, but will only focus on the details of transforma-
tions across class and object diagrams.

In our investigation of UML diagrams, we have identified
three major transformational dimensions (see Figure 6). Views
can be seen as abstract or concrete, generic or specific, and
behavioral or structural [14]. The abstract-concrete dimension
was foreshadowed in Section 4, where a C2 architecture was
the abstract view and the generated UML model the concrete
view. The generic-specific dimension denotes the generality of
modeling information. For instance, a class diagram naturally
describes a relationship between classes that must always
hold, whereas an object diagram describes a specific scenario.
Finally, the behavior-structure dimension takes information
about a system’s behavior to infer its structure. For instance,
test scenarios (which are behavioral) depict interactions
between objects (structural) and may thus be used to infer
structure.

Manual management of design model connectors across
these three dimensions is often infeasible due to the complex-
ity of the models. Two factors contribute to the complexity:
(1) the existence of model elements that are only relevant to
one view, but not to others (e.g., “helper” classes such as
theWarehouseCollection in Figure 8d), and (2) the large num-
ber of interdependencies between model elements that must be
traced and understood (e.g., the grey arrows between elements
in the four models shown in Figures 2, 5, 8, and 9). In order to
control this complexity, we have developed a tool, UML/Ana-

Figure 6. Design model connectors.

statechart
view

object
view

sequence
view

class
view

C2SADEL
view

statechart
view

object
view

sequence
view

class
view

instance

type

behaviorstructure

concrete

abstract

Generalization x Class x Generalization gg Generalization
Generalization x Class x Association gg Association
Generalization x Class x Aggregation gg Aggregation
Association x Class x Generalization gg Association
Association x Class x Association gg Association
Aggregation x Class x Associationgg Association

Figure 7. Partial rule set used by UML/Analyzer to simplify class and
object diagrams. These rules have been created in collaboration with
the Rational Software Corporation. Rational also implemented our
abstraction method in a tool called Rose/Architect [13].

Figure 8. Series of intermediate models (from right to left) produced
to identify behavioral mismatch.

aVehicleaVehicleaVehicle
aVehicleaWarehouse

Design Excerpt

aSurplus

availableGoods

aWarehouse

IM1IM2IM3

aSurplus

Potential Mismatch:
Vehicle's ability to interact
with aWarehouse violates

C2 behavior

aWarehouse

availableGoods

aWarehouse

aVehicleCollection

availableGoods

theCargoRouter

theWarehouseCollection

(a) (b) (c) (d)

lyzer [14], that uses an abstraction technique to eliminate
helper classes. UML/Analyzer searches for class and object
patterns and replaces them with simpler, more abstract pat-
terns of the same type based on a set of over 60 rules. An
excerpt of UML/Analyzer’s rule set is shown in Figure 7.

For instance, to identify a mismatch in the class diagram
shown in Figure 8d, we need to eliminate the helper classes
availableGoods and aSurplus that “obstruct” our view of the
relationship between aVehicle and aWarehouse. In this exam-
ple, UML/Analyzer sees an aggregation from aVehicle to
availableGoods, followed by a generalization (inheritance)
from availableGoods to aSurplus, which is, in turn, followed
by an association from aSurplus to aWarehouse (Figure 8c).
The tool then uses its abstraction rules to replace the box
(class) and line (relationship) patterns. Further applying our
abstraction rules on the example, we end up finding an associ-
ation relationship between aVehicle and aWarehouse (Figure
8a). This example is further discussed below.

5.3 Application to the Cargo Router Example
As already discussed, we will focus on the application of
design model connectors to class and object views of the cargo
router system. We use the UML model produced by the trans-
formation discussed in Section 4 as our starting point. Figure 9
shows an excerpt of the consistency checking process in the
context of cargo router [15]. The figure depicts a lower-level
design (right side) and its intermediate abstraction produced
by UML/Analyzer in the manner outlined above (middle). The
intermediate model can be compared more easily with the the
original model (i.e., architecture, shown on the left) to ensure
consistency. For example, the association relationship between
CargoRouter and Vehicle in the middle diagram is in violation
of the original architecture’s structure since no corresponding
link between the two can be found in the C2 architecture (left
diagram).

Another potential mismatch between the two models
depicted in Figure 9 is a result of C2’s rule that two topologi-
cally adjacent components (e.g., Vehicle and Warehouse) are
not allowed to directly interact. The intermediate model again
helps to detect that mismatch as shown in Figure 8. The object
aVehicle is part of availableGoods, which, in turn, is a child of
aSurplus. Since aSurplus can only access the object aWare-
house (part of another component), it follows that it is possible

for Vehicle to interact with Warehouse—a violation of the
original architectural model.

6 PROPERTIES OF MODEL CONNECTORS
This paper has presented three classes of model connectors
needed at the “upstream” stages of the software lifecycle.
Each of the three is different from the others and, in this paper,
they have been applied only on our own modeling techniques.
At the same time, the model connectors share several charac-
teristics we believe to be more generally applicable (e.g., they
all employ intermediate models and a combination of synthe-
sis and analysis). Explicating such characteristics will help
software researchers and practitioners to better understand
software model connectors; it will also potentially help them
in developing their own or adapting existing techniques for
bridging software models.

In this section, we discuss several properties of model con-
nectors we have identified to date. We illustrate each property
with examples drawn from the model connectors discussed
earlier in the paper. The properties can be organized in two
major categories:
• properties relevant to a model connector as a whole. The

identified properties are purpose, directionality, automat-
ability, and reliability.

• properties relevant to the relationships between individual
elements of the involved models. These specify the nature
of traceability links between the elements.

6.1 Purpose
Models are transformed to achieve certain objectives during
development. The transformation purpose describes the under-
lying intent behind a model transformation. Examples of pur-
poses are refinement, mismatch detection, or the creation of a
stakeholder-specific (e.g., user) view.

A single model connector often serves several purposes.
For example, the purpose of the CBSP model connector is the
refinement of WinWin requirements negotiation artifacts into
architectural elements. CBSP also supports analysis indirectly,
by capturing architectural trade-offs and mismatches revealed
in the process of architectural modeling. Problems detected
during architectural modeling and simulation can be captured
as CBSP architectural decisions, such as

S: Three seconds system response time not possible due to
limited network bandwidth.

CargoRouter

Optimizer

Vehicle Warehouse

ServicesConn

ArtistConn

Artist

Clock

ClockConn

Reporter

CommunicationConn

Port

C2 Architectural View UML Design Class View

aRoute

RefrigeratedStorage

aNavPoint

theStorage

aDeficiency

aWarehouse

aSurplus

aVehicle

availableGoods

RegularStorage

aLocation

theCargoRouter

aRouteCollection

theWarehouseCollection

Abstraction

Warehouse

CargoRouter

CommunicationConn

Vehicle

Potential Mismatch:
Link between

CargoRouter and Vehicle
violates C2 structure

Figure 9. Use of an intermediate model to find a structural inconsistency between
architecture and design models.

6.2 Directionality
We can distinguish between unidirectional
and bi-directional model connectors. Uni-
directional connectors allow transforma-
tion in one direction only. For example, in
Section 6 we discussed a unidirectional
connector that allows derivation of a
model’s structural view from its behavioral
view. Another common model connector
that is typically unidirectional is compila-
tion: it is difficult to derive source code
from a compiled image.

Bi-directional model connectors estab-
lish a “two-way bridge” between two mod-
els. An example of a bi-directional
connector is the bridge between C2SADEL

and UML: the mapping between a C2SADEL model and the
UML model initially generated by the transformation dis-
cussed in Section 4 is bijective.

6.3 Reliability
Reliability describes the degree of confidence in a model con-
nector. Reliability depends on the rules that can be established
to guide the application of a model connector. We distinguish
between informal, semi-formal, and formal rules. While
model connectors in the later stages of the life-cycle (e.g.,
compilation) are typically based on formal rules, connectors
that are employed early in the process (e.g., CBSP) depend on
heuristics.

For example, transforming a requirements model into an
architecture model is heavily influenced by the ambiguity and
imprecision of natural language and cannot be considered
highly reliable. We have tried to mitigate that in CBSP via
guided, expert-based refinements of negotiation results and
guidelines for analyzing the vote spread of the experts (recall
discussion of Figure 1). The higher degree of formalization of
architectural and design models typically renders a model con-
nector between them more reliable. At the same time, in our
particular approach to bridging architectures and designs, we
faced the problem that several aspects of UML semantics
remain informal. DRADEL [30] has tried to address this issue
by placing formal constraints, specified in OCL, on UML
modeling elements (recall Section 4).

6.4 Automation
This property describes the degree to which tools support the
rules guiding a model connector. We distinguish between
manual, semi-automated, and fully automated support.

To a large extent, the degree of automation depends upon
the level of formality of the involved models. For example, the
derivation of CBSP artifacts from (informal) requirements is
semi-automated using EasyWinWin. On the other hand, the
comparatively higher degree of design formalization allows
one to build fully automated model connectors between design
models. For example, UML/Analyzer [14] automatically syn-
thesizes intermediate models during a transformation. These
intermediate models are then used to detect structural and
behavioral inconsistencies by employing automated compari-
son (i.e., analysis) techniques. As it can be seen in the context
of Figure 8, a series of intermediate models may be generated
by a single model connector.

6.5 Element Relationship Properties
The properties discussed thus far characterized model connec-
tors as a whole. We now turn our attention to properties of the
relationships between individual elements of different models.

6.5.1 Qualifier
Elements from two models related by a model connector can
be unrelated, complementary, redundant, or contradictory.
Model connectors use various mechanisms to identify and/or
make use of these types of relationships, as indicated by the
examples below.
• Unrelated: If no relationship is established between two

model elements by a model connector, we regard these ele-
ments as unrelated. This happens if certain elements of the
source model are not refined or the target model deals with
different concerns. For example, the CBSP voting process

emphasizes architectural relevance, helping the architect to
focus on the most relevant subset of the negotiation results
and to ignore unrelated artifacts (e.g., a development sched-
ule win condition may have no bearing on a component
property CBSP artifact).

• Complementary: If a model element completes information
provided by another model element we denote that relation-
ship as complementary. For example, the services a C2
component requires are explicit, first-class constructs in
C2SADEL and are used as the basis of architectural analy-
sis. In the UML model, these services become a part of sys-
tem documentation, intended as a guide to the designer.

• Redundant: A single model element is often used in multi-
ple models. Relationships among different occurrences of
such an element can be qualified as redundant. For example,
VehicleComponent is represented in the architecture dia-
gram, as well as the Object and Component UML diagrams
in Figure 5. Such redundancy is unavoidable when a model
connector’s source and target models have overlapping con-
cerns. At the same time, the redundancy presents a problem
in that changes in one such view must always be propagated
to all other views.

• Contradictory: The relationship of two or more elements is
contradictory if it is impossible for (some subset of) the
model properties that depend upon the elements to be valid
simultaneously. For example, the architectural model in
Figure 9 indicates that no interaction relationship may exist
between Vehicle and CargoRouter, which is contradicted by
the design model.

6.5.2 Cardinality
In addition to the qualifier, the cardinality of the relationship
between model elements has to be identified. We can distin-
guish the following relationships. Examples of each relation-
ship can be found in Figure 2.
• Transmute: One element of the source model is related to

exactly one element in the destination model. An example is
a win condition that is related to exactly one component in
an architecture.

• Diverge: One element of the source model relates to multi-
ple elements in the destination model. An example is a win
condition that is refined into a component and a connector
in an architecture.

• Converge: Multiple elements of the source model are
related to one element in the destination model. An example
are several win conditions that converge into one compo-
nent in an architecture.

7 RELATED WORK
The work described in this paper is related to several areas of
research covering requirements, architecture, and design mod-
eling and transformation. Our model connector between
requirements and architectures was applied to WinWin, an
example of a class of techniques that focus on capturing
requirements, their tradeoffs, and their refinements in a struc-
tured, but not always formal manner [11,12,23,33,39]. For this
reason, even though we have developed and applied our CBSP
approach specifically in the context of WinWin, we believe
CBSP to be more generally applicable.

The refinement of requirements into architecture and design
is often discussed in the context of requirements capture. Gen-

erally, those discussions focus on processes (e.g., [39]), but not
automatable techniques. Our work on refining requirements
extends such a process with a structured transformation tech-
nique and tool support. A handful of other approaches exist
that, at least in principle, also enable automated refinement of
requirements (e.g., [34]). However, those approaches are pred-
icated on a more formal treatment of requirements artifacts
than a technique such as WinWin would allow.

A key issue in transforming requirements into architecture
and design is effectively tracing development decisions across
modeling artifacts. Researchers have recognized the difficul-
ties in capturing such traces [17,18]. Gotel and Finkelstein
[18] suggest a formal approach for ensuring the traceability of
requirements during development. Our approach is less for-
mal, but captures extensive trace information throughout the
development process, thus satisfying many of the traceability
needs defined in [17,18].

Software architecture researchers have studied the issue of
refining an architecture into a design. An approach representa-
tive of the state-of-the-art in this area is SADL [32]. SADL
incrementally transforms an architecture across levels of
abstraction using a series of refinement maps, which must sat-
isfy a correctness-preserving criterion. While powerful, this
transformation technique can be overly stringent [16]. It sacri-
fices design flexibility to a notion of (absolute) correctness.
Furthermore, formally proving the relative correctness of
architectures at different refinement levels may prove imprac-
tical for large architectures and numbers of levels.

Different elements of our model connectors between archi-
tectural and UML models can be found in existing work.
Cheng et al. [10] enable transformations by converting models
into a formal environment (e.g., algebraic specification) to
allow precise reasoning. Likewise, our approach, defines C2
architectures in UML via formal OCL constraints to allow
precise reasoning. Although a formal approach to transforma-
tion has a number of advantages, we have found that it is not
always suitable or practical. Several of our design model con-
nectors are therefore based on diagrammatic transformations
of UML analogous to [24,25]. In fact, we adopted as one of
our inter-design model connectors the approach for transform-
ing sequence diagrams to statecharts introduced by Koskimies
et al. [25].

The work described in this paper also relates to the field of
transformational programming [5,26,35]. The main differ-
ences between transformational programming and model con-
nectors are in their degrees of automation and scale.
Transformational programming is fully automated, though its
applicability has been demonstrated primarily on small, well
defined problems [35]. Our approach, on the other hand, can
be characterized only as semi-automated; however, we have
applied it on larger problems and a more heterogeneous set of
models, representative of real development situations.

8 DISCUSSION AND CONCLUSION
In this paper, we have discussed a set of model connectors
whose ultimate goal is to facilitate the consistent transforma-
tion of a system’s requirements into its implementation. We
believe that this is an important contribution in that our
approach provides some novel solutions to a difficult problem,
studied extensively by software engineering researchers. For

example, the CBSP model connector provides a good balance
of the structure and flexibility needed to address the problem
of deriving an effective architecture from a system’s require-
ments. System quality requirements in particular tend to drive
the choice of architecture [23]; at the same time, the “optimal”
architecture if often a discontinuous function of the required
quality level. Highly formal approaches are typically unable to
adequately deal with this discontinuity, while the collaborative
CBSP approach can handle it more readily.

Another contribution of this paper lies in its identification
of a set of underlying principles needed to enable a series of
model connectors: all connectors discussed in this paper rely
on the use of intermediate models, the coupling of analysis and
synthesis of varying degrees of automation, and a set of shared
properties (recall Section 6). While we have developed and
applied these principles in the context of specific require-
ments, architecture, and design modeling approaches, we have
taken special care to ensure their broader applicability. Thus,
for example, the CBSP approach does not depend on the use of
WinWin, but can instead be applied to a wide range of require-
ments model artifacts. Similarly, we have already applied our
ADL-to-UML model connector to several ADLs [38]. Other
well understood software model connectors also appear to
adhere to these principles. For example, compilation is a fully
automated, typically unidirectional, highly reliable synthesis
model connector whose intermediate models include abstract
syntax trees.

Our work in this arena continues along several dimensions.
The MBASE approach [7] and its support for multiple model
categories is used as the conceptual integration platform for
this work. We also integrating the tool support provided by
EasyWinWin, DRADEL, and UML/Analyzer to facilitate eas-
ier development and implementation of model connectors; we
intend to leverage all three tools’ existing interfaces to Ratio-
nal Rose to this end. We are also investigating additional
model connectors that will, in particular, allow the use of mul-
tiple ADLs to enable architectural modeling of different sys-
tem characteristics. Finally, we are exploring the suitability of
open hypertext engines [3] for automatically maintaining the
numerous traceability links produced by our model connec-
tors, a task our work to date has not supported.

9 ACKNOWLEDGEMENTS
This material is partly based upon work supported by the
National Science Foundation under Grant No. CCR-9985441.
Effort also sponsored by the Defense Advanced Research
Projects Agency, Rome Laboratory, Air Force Materiel Com-
mand, USAF under agreement numbers F30602-99-1-0524,
F30602-00-C-0200, and F30602-00-2-0615. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.
Paul Gruenbacher was supported by a grant from the Austrian
Science Fund (1999/J 1764 “Collaborative Requirements
Negotiation Aids”).

10 REFERENCES
1. M. Abi-Antoun and N. Medvidovic. Enabling the Refine-

ment of a Software Architecture into a Design. UML’99,
Oct. 1999.

2. R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering
and Methodology, vol. 6, no. 3, Jul. 1997.

3. K. M. Anderson. Supporting Software Engineering with
Open Hypermedia. ACM Computing Surveys’ Electronic
Symposium on Hypermedia, Dec. 1999.

4. D. Batory and S. O’Malley. The Design and Implementation
of Hierarchical Software Systems with Reusable Compo-
nents. ACM Transactions on Software Engineering and
Methodology, Oct. 1992.

5. F. L. Bauer, B. Moller, H. Partsch, and P. Pepper. Formal
Program Construction by Transformations – Computer-
Aided, Intuition-Guided Programming. IEEE Transactions
on Software Engineering, 15(2), Feb. 1989.

6. B. Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, R.
Madachy. Using the WinWin Spiral Model: A Case Study.
IEEE Computer, 7:33-44, 1998.

7. B. Boehm and D. Port. Escaping the Software Tar Pit:
Model Clashes and How to Avoid Them. Software Engi-
neering Notes, Jan. 1999.

8. B. Boehm and P. Gruenbacher. Supporting Collaborative
Requirements Negotiation: The EasyWinWin Approach.
International Conference on Virtual Worlds and Simulation,
San Diego, Jan. 2000.

9. G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1998.

10. B. H. C. Cheng, E. Y. Wang, R. H. Bourdeau, and H. A.
Richter. Bridging the Gap Between Informal and Formal
Approaches to Software Development. Software Engineer-
ing Research Forum, Nov. 1995.

11. L. Chung, D. Gross, and E. Yu. Architectural Design to
Meet Stakeholder Requirements, In P. Donohoe, ed., Soft-
ware Architecture, Kluwer Academic Publishers, 1999.

12. A. Dardenne, S. Fickas, and A. van Lamsweerde. Goal-
Directed Concept Acquisition in Requirement Elicitation.
6th International Workshop on Software Specification and
Design (IWSSD 6), Oct. 1993.

13. A. Egyed and P. Kruchten. Rose/Architect: A Tool to Visu-
alize Architecture. In Proceedings of the Hawaii Interna-
tional Conference on System Sciences, Jan. 1999.

14. A. Egyed. Heterogeneous View Integration and Its Automa-
tion. Ph.D. Dissertation, University of Southern California,
Aug. 2000.

15. A. Egyed and N. Medvidovic. A Formal Approach to Heter-
ogeneous Software Modeling. Conference on the Funda-
mental Aspects of Software Engineering, Mar. 2000.

16. D. Garlan. Style-Based Refinement for Software Architec-
ture. In Proceedings of the Second International Software
Architecture Workshop (ISAW-2), pp. 72-75, San Francisco,
CA, Oct. 1996.

17. L. R. Gieszl. Traceability for Integration. 2nd International
Conference on Systems Integration, pp. 220-228, 1992.

18. O. C. Z. Gotel and C. W. Finkelstein. An Analysis of the
Requirements Traceability Problem. First Int’l Conference
on Requirements Engineering, pp. 94-101, 1994.

19. M. M. Gorlick and R. R. Razouk. Using Weaves for Soft-
ware Construction and Analysis. ICSE 13, Austin, TX, May
1991.

20. GroupSystems.com. http://www.groupsystems.com/
21. Gruenbacher, P. Integrating Groupware and CASE Capabili-

ties For Improving Stakeholder Involvement in Require-

ments Engineering, Euromicro 2000 Conference,
Maastricht, The Netherlands, 2000.

22. Gruenbacher P., Egyed A., Medvidovic N. Dimensions of
Concerns in Requirements Negotiation and Architecture
Modeling. ICSE 2000 Workshop on Multidimensional Sepa-
ration of Concerns, Limerick, Ireland, Jun. 2000.

23. Kazman R., Barbacci M., Klein M., Carriere, S.J., Woods
S.G., Experience with Performing Architecture Tradeoff
Analysis, ICSE’99, Los Angeles, CA, May 1999.

24. I. Khriss, M. Elkoutbi, and R. Keller. Automating the Syn-
thesis of UML Statechart Diagrams from Multiple Collabo-
ration Diagrams. UML’98, Jun. 1998.

25. K. Koskimies, T. Systa, J. Tuomi and T. Mannisto. Auto-
mated Support for Modelling OO Software. IEEE Software,
Jan. 1998.

26. J. Liu, O. Traynor, and B. Krieg-Bruckner. Knowledge-
Based Transformational Programming. Fourth International
Conference on Software Engineering and Knowledge Engi-
neering, 1992.

27. D. C. Luckham and J. Vera. An Event-Based Architecture
Definition Language. IEEE Transactions on Software Engi-
neering, vol. 21, no. 9, pp. 717-734, Sep. 1995.

28. N. R. Mehta, N. Medvidovic, and S. Phadke. Towards a Tax-
onomy of Software Connectors. ICSE 2000, Jun. 2000.

29. N. Medvidovic, P. Oreizy, R. N. Taylor, R. Khare, and M.
Guntersdorfer. An Architecture-Centered Approach to Soft-
ware Environment Integration. Technical Report UCI-ICS-
00-11, University of California, Irvine, Mar. 2000.

30. N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A Lan-
guage and Environment for Architecture-Based Software
Development and Evolution. ICSE’99, May 1999.

31. N. Medvidovic and R.N. Taylor. A Classification and Com-
parison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering,
vol. 26, no. 1, Jan. 2000.

32. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct
Architecture Refinement. IEEE Transactions on Software
Engineering, vol. 21, no. 4, pp. 356-372, Apr. 1995.

33. G. Mullery. CORE: A Method for Controlled Requirements
Specification. ICSE 4, Munich, Germany, Sep. 1979.

34. B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specification. IEEE Transactions on Software
Engineering, Oct. 1994.

35. H. Partsch and R. Steinbruggen. Program Transformation
Systems. ACM Computing Surveys, vol. 15, no. 3, Sep.
1983.

36. D. E. Perry. Generic Descriptions for Product Line Architec-
tures. 2nd International Workshop on Development and
Evolution of Software Architectures for Product Families
(ARES II), Spain, Feb. 1998.

37. D. E. Perry and A. L. Wolf. “Foundations for the Study of
Software Architectures.” Software Engineering Notes, Oct.
1992.

38. J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S.
Rosenblum. Integrating Architecture Description Languages
with a Standard Design Method. ICSE’98, Kyoto, Japan,
Apr. 1998.

39. S. Robertson and J. Robertson. Mastering the Requirements
Process. Addison-Welsey, 1999.

40. M. Shaw. Procedure Calls are the Assembly Language of
Software Interconnection: Connectors Deserve First-Class
Status. In Proceedings of the Workshop on Studies of Soft-
ware Design, 1993.

41. M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, April 1996.

